Fluent算例:机箱风扇强制对流换热CFD仿真
本案例在ANSYS2019R2中演示了如何利用Fluent进行机箱风扇强制对流换热CFD仿真。首先于DM中导入几何模型,利用布尔运算功能将模型进行处理,接着导入Mesh进行网格划分以及边界命名,然后利用Fluent进行求解,最后在CFD-POST中进行后处理。案例基于3D、瞬态求解。一案例模型几何模型如下图所示。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/197ebc6ac08241ea8e967f056b291d88~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=RG9kBQhSUZfwPsKG10pGdKvDkCo%3D
二Workbench设置▼ 将Fluid Flow (Fluent)拖入右边空白界面。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/776767e259664160bd714e0a4018a0c3~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=dNa3PDwJ0anBDOjSTEfj%2BuEGKqI%3D
▼ 以DesignModeler方式将模型导入进Geometry中。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/7e8fd1d5813540df888fa95878c9159a~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=NyBydBEWSwJuSGgvfhV1yWwUTt0%3D
▼ 模型处理具体操作见如下视频。▼ 模型处理完成后,关闭DesignModeler,右键点击Mesh,选择Edit...。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/ed225e8b1928400fa5d9aaa66e1ade8b~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=Wv6WZ%2B2aOVE7AU9rb1fA1SFNzus%3D
▼ 网格划分及边界条件命名见如下视频。三Fluent设置▼ 打开Setup,弹出Fluent登录界面进行设置。https://p26-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/5ac4de99f57b4252828a5b6e41b282ce~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=W14hL79e5vLpiLTtjP14uuq%2BhzM%3D
3.1General 设置▼ 将Time改为Transient,勾选Gravity,将Z方向设置重力加速度为-9.81。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/e6b746ae3bbe46ef8325b047aeeab1ab~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=vNCYWYOGyIGP4q0IXOTfjjuLO%2Bc%3D
3.2Model 设置▼ 打开能量方程。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/677df1177d79499f8cd2ffc25883cd71~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=Bokkkv7ezYxalDg1%2B5bcSj6QhGU%3D
▼ 打开粘性模型,选择k-omega双方程模型,勾选SST。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/4214ed1e334f40c9aef991ca66c281d9~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=LQMPfPAO4Twt9a%2FqKfUjT%2FKdokI%3D
3.3Cell Zone Condition 设置▼ 打开fan_case,选择Mesh Motion,其他设置如图中所示。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/2fa5bf573c98452b903d57e2f46e72a6~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=fYEalPThKjSxOBb4460L3ht1Tm8%3D
▼ 点击Operating Conditions...,将Specified Operating Density勾选上。https://p6-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/db3de1b0e2714745b4e0ee856cd55725~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=autDapmeZE%2FrDFgWy1hN0HHOKeA%3D
3.4Boundart Conditions 设置▼ 打开base_chip_1,将其热通量设置为2500 w/m2,壁厚设置为0.001 m。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/c3fbcf076f2f480caf1217072e704bb5~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=b%2B3miNA0Bypa4O%2BR3lS3BcvZlLo%3D
▼ 将壁面设置为对流Convection,传热系数设置为25 w/m2-k,自由流动温度设置为300 K,壁厚设置为0.001 m。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/fe850e433a1c403db9e94c8bc7876998~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=fVsA4ldsc%2FfnUyZobBiYsDW6PII%3D
▼ 将transistor的热通量设置为2500 w/m2,壁厚设置为0.001 m。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/db36927a5f534dbbabc8f3d1b168ac30~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=qnFPK6n6U089KZVBWrn2AsMPWHM%3D
3.5进行初始化设置▼ 利用Hybrid Initialization,点击Initialize进行初始化。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/4352834a54fd4877a1a43e670a274125~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=RIDhcouJ1t8DHaGh%2BnOLPVqOrQQ%3D
3.6Calculation Activities设置▼ 按图中进行设置。https://p26-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/7d28a10dc7994d9bbd7198a87b6d08b5~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=ZpZ5h2cmyWH7psup1uJ7MoNdg7c%3D
3.7Run Calculation设置▼ 瞬态迭代计算设置按图中操作执行。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/e9090f489883482cb3c6d13687d90ff4~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=rKu3rUt5%2BninXNu3n2gl0GkV0v4%3D
四CFD-POST后处理▼ 速度流线图。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/60a8b94a13494270b495d5047e35aab6~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=8fQ88DGki8ipx%2BTRcRsJzJzqlic%3D
▼ 温度云图。https://p26-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/7d97f55de1b24c4db04b4a4f9703d8d5~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=Puh7zSOEK38axR75pDDf0Jv6ouY%3D
▼ 速度体渲染图。https://p3-sign.toutiaoimg.com/tos-cn-i-qvj2lq49k0/f120286d59544e3dbc50401a733ed2e8~tplv-tt-shrink:640:0.jpg?from=2091602832&traceid=20230830231406AF74EE016421B633C585&x-expires=2147483647&x-signature=Cn8859%2BQqBikRYPVj%2FpC5Czz6PE%3D
▼ 动态过程。
读书笔记对流传热是热传递的一种基本方式,它是在流体流动进程中发生的热量传递的现象。主要是由于质点位置的移动,使温度趋于均匀。虽然液体和气体中热传递的主要方式是对流传热,但也常伴有热传导。通常由于产生的原因不同,有自然对流和强制对流两种。根据流动状态,又可分为层流传热和湍流传热。化学工业中所常遇到的对流传热,是将热由流体传至固体壁面(如靠近热流体一面的容器壁或导管壁等),或由固体壁传入周围的流体(如靠近冷流体一面的导管壁等)。这种由壁面传给流体或相反的过程,通常称作给热。对流传热是指不同温度的流体质点在运动中的热量传递。由于引起流体运动的原因不同,对流分为自然对流和强制对流。若由于运动是因流体内部各处温度不同引起局部密度差异所致,则称为自然对流。若由于水泵、风机或其它外力作用引起流体运动,则称为强制对流。但实际上,热对流的同时,流体各部分之间还存在着导热,而形成一种复杂的热量传递过程。
页:
[1]